Download e-book Past and Future: Insights for Reserve Component Use

Free download. Book file PDF easily for everyone and every device. You can download and read online Past and Future: Insights for Reserve Component Use file PDF Book only if you are registered here. And also you can download or read online all Book PDF file that related with Past and Future: Insights for Reserve Component Use book. Happy reading Past and Future: Insights for Reserve Component Use Bookeveryone. Download file Free Book PDF Past and Future: Insights for Reserve Component Use at Complete PDF Library. This Book have some digital formats such us :paperbook, ebook, kindle, epub, fb2 and another formats. Here is The CompletePDF Book Library. It's free to register here to get Book file PDF Past and Future: Insights for Reserve Component Use Pocket Guide.

Contents

  1. The Gradual Shift to an Operational Reserve
  2. Sustaining the Army's Reserve Components as an Operational Force | RAND
  3. Stephen Dalzell - Profile | RAND
  4. IN ADDITION TO READING ONLINE, THIS TITLE IS AVAILABLE IN THESE FORMATS:
  5. Commander discusses future of Air Force Reserve

While artificial intelligence AI is the broad science of mimicking human abilities, machine learning is a specific subset of AI that trains a machine how to learn. Watch this video to better understand the relationship between AI and machine learning. You'll see how these two technologies work, with useful examples and a few funny asides. Resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever.

Things like growing volumes and varieties of available data, computational processing that is cheaper and more powerful, and affordable data storage. All of these things mean it's possible to quickly and automatically produce models that can analyze bigger, more complex data and deliver faster, more accurate results — even on a very large scale.

And by building precise models, an organization has a better chance of identifying profitable opportunities — or avoiding unknown risks. This O'Reilly white paper provides a practical guide to implementing machine-learning applications in your organization. Read white paper. How can machine learning make credit scoring more efficient? Find out credit scoring agencies can use it to evaluate consumer activity to provide better results for creditors.

View article. Download report. Machine learning can be used to achieve higher levels of efficiency, particularly when applied to the Internet of Things. This article explores the topic. Read the IoT article. Banks and other businesses in the financial industry use machine learning technology for two key purposes: to identify important insights in data, and prevent fraud. The insights can identify investment opportunities, or help investors know when to trade.

Data mining can also identify clients with high-risk profiles, or use cybersurveillance to pinpoint warning signs of fraud. Government agencies such as public safety and utilities have a particular need for machine learning since they have multiple sources of data that can be mined for insights. Analyzing sensor data, for example, identifies ways to increase efficiency and save money. Machine learning can also help detect fraud and minimize identity theft. Machine learning is a fast-growing trend in the health care industry, thanks to the advent of wearable devices and sensors that can use data to assess a patient's health in real time.

The technology can also help medical experts analyze data to identify trends or red flags that may lead to improved diagnoses and treatment. Websites recommending items you might like based on previous purchases are using machine learning to analyze your buying history. Retailers rely on machine learning to capture data, analyze it and use it to personalize a shopping experience, implement a marketing campaign, price optimization, merchandise supply planning , and for customer insights.

Finding new energy sources. Analyzing minerals in the ground. Predicting refinery sensor failure. Streamlining oil distribution to make it more efficient and cost-effective. The number of machine learning use cases for this industry is vast — and still expanding. Analyzing data to identify patterns and trends is key to the transportation industry, which relies on making routes more efficient and predicting potential problems to increase profitability.

The data analysis and modeling aspects of machine learning are important tools to delivery companies, public transportation and other transportation organizations. Two of the most widely adopted machine learning methods are supervised learning and unsupervised learning — but there are also other methods of machine learning. Here's an overview of the most popular types.

Supervised learning algorithms are trained using labeled examples, such as an input where the desired output is known. The learning algorithm receives a set of inputs along with the corresponding correct outputs, and the algorithm learns by comparing its actual output with correct outputs to find errors. It then modifies the model accordingly. Through methods like classification, regression, prediction and gradient boosting, supervised learning uses patterns to predict the values of the label on additional unlabeled data.

Richard Thaler on Behavioral Economics: Past, Present, and Future. The 2018 Ryerson Lecture

Supervised learning is commonly used in applications where historical data predicts likely future events. For example, it can anticipate when credit card transactions are likely to be fraudulent or which insurance customer is likely to file a claim.

ipdwew0030atl2.public.registeredsite.com/123241-what-is.php

The Gradual Shift to an Operational Reserve

Unsupervised learning is used against data that has no historical labels. The system is not told the "right answer. The goal is to explore the data and find some structure within. Unsupervised learning works well on transactional data.

Sustaining the Army's Reserve Components as an Operational Force | RAND

For example, it can identify segments of customers with similar attributes who can then be treated similarly in marketing campaigns. Or it can find the main attributes that separate customer segments from each other. Popular techniques include self-organizing maps, nearest-neighbor mapping, k-means clustering and singular value decomposition. These algorithms are also used to segment text topics, recommend items and identify data outliers. Semisupervised learning is used for the same applications as supervised learning.

Stephen Dalzell - Profile | RAND

But it uses both labeled and unlabeled data for training — typically a small amount of labeled data with a large amount of unlabeled data because unlabeled data is less expensive and takes less effort to acquire. This type of learning can be used with methods such as classification, regression and prediction. Semisupervised learning is useful when the cost associated with labeling is too high to allow for a fully labeled training process.

Early examples of this include identifying a person's face on a web cam.


  • What it is and why it matters.
  • Meta-Algorithmics: Patterns for Robust, Low Cost, High Quality Systems;
  • Sull aria ? Che soave zefiretto, No. 20 from Le Nozze di Figaro, Act 3, K492 (Full Score).

Reinforcement learning is often used for robotics, gaming and navigation. With reinforcement learning, the algorithm discovers through trial and error which actions yield the greatest rewards. This type of learning has three primary components: the agent the learner or decision maker , the environment everything the agent interacts with and actions what the agent can do.

IN ADDITION TO READING ONLINE, THIS TITLE IS AVAILABLE IN THESE FORMATS:

The objective is for the agent to choose actions that maximize the expected reward over a given amount of time. The agent will reach the goal much faster by following a good policy. So the goal in reinforcement learning is to learn the best policy. Thomas H. Although all of these methods have the same goal — to extract insights, patterns and relationships that can be used to make decisions — they have different approaches and abilities.

Data mining can be considered a superset of many different methods to extract insights from data. It might involve traditional statistical methods and machine learning. Data mining applies methods from many different areas to identify previously unknown patterns from data. This can include statistical algorithms, machine learning, text analytics, time series analysis and other areas of analytics.


  • Performance and Femininity in Eighteenth-Century German Womens Writing: The Impossible Act (Palgrave Studies in Theatre and Performance History)?
  • Last Rights: Rescuing the End of Life from the Medical System.
  • Improving last-mile logistics with the future of mobility | Deloitte Insights.
  • Design and Analysis of Long-term Ecological Monitoring Studies?

Data mining also includes the study and practice of data storage and data manipulation. The main difference with machine learning is that just like statistical models, the goal is to understand the structure of the data — fit theoretical distributions to the data that are well understood. So, with statistical models there is a theory behind the model that is mathematically proven, but this requires that data meets certain strong assumptions too.

Machine learning has developed based on the ability to use computers to probe the data for structure, even if we do not have a theory of what that structure looks like. The test for a machine learning model is a validation error on new data, not a theoretical test that proves a null hypothesis. Because machine learning often uses an iterative approach to learn from data, the learning can be easily automated.

Are there candidate positions that should be considered for elimination, downgrading to a lower rank, or conversion to senior civilian positions? Exemptions to the basic authorized strength are appropriate in both structure and number. Positions described as mobilization assistants or National Guard assistants are the requirements category that raises the most questions.

Congress and DoD should maintain the current system of basic authorized strength plus individual exemptions. Institute methods for DoD-wide tracking of reserve component general and flag officer authorized strengths. Future reductions in general and flag officer requirements or authorizations should not disproportionately affect those positions that are viewed as developmentally crucial.

Commander discusses future of Air Force Reserve

Best practices, ideas, and insights from current leader development efforts in the services should be shared to catalyze further experimentation and innovation in leader development. Related Products Research Brief. Also available in print form. Harrington, Lisa M.